Nonparametric methodology for the time-dependent partial area under the ROC curve
نویسندگان
چکیده
منابع مشابه
Regression Analysis for the Partial Area under the Roc Curve
Performance evaluation of any classification method is fundamental to its acceptance in practice. Evaluation should consider the dependence of a classifier’s accuracy on relevant covariates in addition to its overall accuracy. When developing a classifier with a continuous output that allocates units into one of two groups, receiver operating characteristic (ROC) curve analysis is appropriate. ...
متن کاملBoosting the Area under the ROC Curve
We show that any weak ranker that can achieve an area under the ROC curve slightly better than 1/2 (which can be achieved by random guessing) can be efficiently boosted to achieve an area under the ROC curve arbitrarily close to 1. We further show that this boosting can be performed even in the presence of independent misclassification noise, given access to a noise-tolerant weak ranker.
متن کاملGeneralization Bounds for the Area Under the ROC Curve
We study generalization properties of the area under the ROC curve (AUC), a quantity that has been advocated as an evaluation criterion for the bipartite ranking problem. The AUC is a different term than the error rate used for evaluation in classification problems; consequently, existing generalization bounds for the classification error rate cannot be used to draw conclusions about the AUC. I...
متن کاملEmpirical likelihood inference for the area under the ROC curve.
For a continuous-scale diagnostic test, the most commonly used summary index of the receiver operating characteristic curve (ROC) is the area under the curve (AUC) that measures the accuracy of the diagnostic test. In this article, we propose an empirical likelihood (EL) approach for the inference on the AUC. First we define an EL ratio for the AUC and show that its limiting distribution is a s...
متن کاملConfidence Intervals for the Area Under the ROC Curve
In many applications, good ranking is a highly desirable performance for a classifier. The criterion commonly used to measure the ranking quality of a classification algorithm is the area under the ROC curve (AUC). To report it properly, it is crucial to determine an interval of confidence for its value. This paper provides confidence intervals for the AUC based on a statistical and combinatori...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Statistical Planning and Inference
سال: 2011
ISSN: 0378-3758
DOI: 10.1016/j.jspi.2011.06.025